

Catalyst Transfer Polymerization Reactions Past, Present, Future

2-22-2022

Jeanette Piña Texas A&M University

Outline

Part I. Properties of Polymers Dispersity Growth

Part II. The Discovery McCullough Group Yokozawa Group Gradient Copolymers

Part III. Ring-Walking van der Boom Group

Part IV. Mechanistic Studies Rate-Determining Step Ring-walking Efficiency

Part V. Applications Gomez Group

Properties of Polymers: Dispersity

Weight-average molecular weight (M_W) Number-average molecular weight (M_n) $D = \frac{M_W}{M_n}$

Example: Mixture of
$$\frac{1}{3}$$
 pentane, $\frac{1}{3}$ hexane, $\frac{1}{3}$ heptane
Pentane 72 $\frac{g}{mol}$
Hexane 86 $\frac{g}{mol}$
Heptane 100 $\frac{g}{mol}$
Total Mass 258 $\frac{g}{mol}$
Weight-average molecular weight (M_W)
 $M_W = \left(\frac{72}{258}\right)72 + \left(\frac{86}{258}\right)86 + \left(\frac{100}{258}\right)100$
 $= 20.1 + 30.0 + 38.8 = 88.9$
Most of the weight was in heptane (43.6 %)

Number-average molecular weight (M_n) $M_n = \frac{1}{3}(72) + \frac{1}{3}(86) + \frac{1}{3}(100) = 86$ $D = \frac{M_W}{M_n} = \frac{88.9}{86} = 1.03$

Properties of Polymers: Chain-Growth

Properties of Polymers: Step-Growth

Properties of Polymers: Growth

Catalyst Transfer Polymerization

McCullough Group - dpppNiCl₂

Sheina, E.E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Macromolecules 2004, 37, 10, 3526–3528.

Screening Reactions

Sheina, E.E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Macromolecules 2004, 37, 10, 3526–3528.

More Evidence of Chain Growth Polymerization Pt. 1

Sheina, E.E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Macromolecules 2004, 37, 10, 3526–3528.

Yokozawa Group - dpppNiCl₂

More Evidence of Chain Growth Polymerization

Gradient π -Conjugated Copolymers

18

14

Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. *Macromolecules* **2004**, *37*, 4, 1169–1171. Locke, J. R.; McNeil, A. J. *Macromolecules* **2010**, *43*, 21, 8709-8710.

Isolation & Characterization of Pt η^2 -complex

³¹P{¹H} NMR: δ 15.6 ppm, ³¹P{¹H} NMR: δ 12.45 ppm 14.7 ppm

Strawser, D.; Karton, A.; Zenkina, O. V.; Iron, M. A.; Shimon, L. J. W.; Martin, J. M. L.; van der Boom, M. E. J. Am. Chem. Soc. 2005, 127, 26, 9322–9323.

Characterization of Ni η^2 -complex

Complex	³¹ Ρ{ ¹ Η} δ	J _{PP}
3	16.9 ppm 18.3 ppm	39.7 Hz
5	11.24 ppm	-

Similar to 2005 Pt studies

Experiment to Determining Reaction Pathway

Intramolecular Process by Ni η^2 -complex

Catalyst Transfer Polymerization Mechanism

Rate Determining Step: Ligand and/or Monomer Dependent?

Rate Determining Step: (dppe)NiCl₂

Transmetalation Not RDS with Thiophene Monomer

Finding RDS with Thiophene Monomer

Transmetalation Not RDS with Hexyloxyphenylene Monomer

Finding RDS with Hexyloxyphenylene Monomer

RDS: Not Monomer Dependent for (dppe)NiCl₂

RDS for (dppe)NiCl₂: Reductive Elimination

RDS for (dppe)NiCl₂: Reductive Elimination

RDS: Transmetalation?

RDS: Transmetalation?

Lanni, E. L.; McNeil, A. J. Macromolecules 2010, 43, 19, 8039-8044.

RDS for (dppe)NiCl₂: Reductive Elimination

RDS for (dppp)NiCl₂: Transmetalation

Ring-Walking Efficiency: 100 %

Leone, A. K.; Goldberg, P. K.; McNeil, A. J. J. Am. Chem. Soc. 2018, 140, 25, 7846–7850.

Ring-Walking Efficiency: Decreasing

Ring-Walking Efficiency: 0 %

Ring-Walking Efficiency: MALDI-TOF/MS

Leone, A. K.; Goldberg, P. K.; McNeil, A. J. J. Am. Chem. Soc. 2018, 140, 25, 7846–7850.

Catalyst Transfer Polymerization Reactions

Synthesis of Block Copolymers

P3HT-*b*-PFTBT

Polymer (ψ _{РЗНТ})	$\boldsymbol{M}_{n}\left(rac{kg}{mol} ight)$	$M_{w}\left(rac{kg}{mol} ight)$	Ð	
P3HT (1.0 P3HT)	7.9	12.3	1.54	$\begin{array}{c} & & C_6H_{13} \\ & & \\ & & \\ & & \\ HT-P3HT \end{array}$
P3HT- <i>b</i> -PFTBT (0.4 P3HT)	16.3	23.5	1.44	
P3HT- <i>b</i> -PFTBT (0.22a P3HT)	12.5	17.1	1.36	C_6H_{13} $H_{17}C_8$ C_8H_{17} S N H_{17} N N N H_{17} N N N H_{17} N N H_{17} N N N N H_{17} N N N N H_{17} N N N
P3HT- <i>b</i> -PFTBT (0.22b P3HT)	17.9	23.4	1.31	P3HT- <i>b</i> -PFTBT

Thermal Annealing Results

Temperature vs Solar Cell Performance: Power Conv. Eff.

Temperature vs Solar Cell Performance: Open-Circuit Voltage

Temperature vs Solar Cell Performance: Short-Circuit Current

Temperature vs Solar Cell Performance: Fill Factor

Electron Mobility from Transistors

195

Annealing Temperature (°C)

230

25

165

Thank you!

Questions?